Fertilization and irrigation of fruit crops

Attila Ombódi

Definition of fertilization

 The process of providing materials (fertilizers) to the soil, to the leaves (or to the air) for supplying plant nutrients or amending soil fertility.

Basic elements of a fertilization technology

- 1. type of the fertilizers
- 2. amount of the fertilizers
- 3. method of fertilizer application
- 4. time of fertilizer application

1. Fertilizers used for fruit production

- Organic fertilizers: farm yard manure, compost, green manure, etc. – for improving organic matter content, soil structure and water holding capacity
- · Inorganic fertilizers
- Mined inorganic fertilizers:- limestone, gypsum, etc. - for soil amendment, like changing pH, CEC
- Chemical fertilizers for maintaining optimal nutient level in the soil; to avoid/cure nutrient deffciency symptoms;
 straight, compound or complex?
 CI containing fertilizers →← berry fruits
- Controlled release fertilizers

2. Amount of fertilizers

- · The used amount of fertilizers depends on the
- species
- projected yield
- nutrient use efficiency of the crop
- cultivation method, level of cultivation
- soil type
- organic matter and nutrient content of the soil
- weather conditions (leaching, mineralisation)
- type of fertilizer used
- application method

/Incrocci & Massa, 2017/

Inputs for fertilizer calculation and fertilization

- · Soil type
- Results of soil test and foliar analysis + visual diagnosis (observation)
- Cropping history of the field → target yield (t)
- · Relative nutrient need (kg/t) of the crop
- Fertilizer composition

3. Methods of fertilizer application

· Directly to the soil:

broadcast application - depth of incorporation, banding, sidedressing; injection

- Distributed by irrigation onto the soil: fertigation (chemigation) (fertilization + irrigation = fertigation irrigation methods - drip, sprinkler
- Onto the leaves (foliar application):
 mainly for supplementary application to avoid/
 cure deficiency problems (Ca!, microelements!; N,
 Mg), at the time of grand period of shoot growth

Advantages of fertigation

- Nutrient concentration can be maintained around the optimum level
- The following parameters can be constantly adjusted to the actual needs of the plants, to the growth phases:
- amount of nutrients
- concentration of nutrients
- ratio of nutrients

3. Methods of fertilizer application

· Directly to the soil:

broadcast application - depth of incorporation, banding, sidedressing, drill hole; injection

- Distributed by irrigation onto the soil: fertigation (or chemigation) (fertilization + irrigation = fertigation) irrigation methods - drip, sprinkler
- Onto the leaves (foliar application):
 mainly for supplementary application to avoid/
 cure deficiency problems (Ca!, microelements!; N,
 Mg), at the time of grand period of shoot growth

4. Time of fertilizer application

- · At orchard establishment
- Goal: soil amendment, making a reserve of nutrients at the depth of the future main root zone
- farm yard manure; P, K, Mg, Ca
- Outside of the vegetation period basal fertilization
- Goal: keeping good nutrient level in the soil
- farm yard manure (once in 3-4 years) late autumn, N – early spring; P and K - autumn (once in 2-3 years), Ca, Mg
- During the vegetation period (sidedressing), fertigation, foliar application
- Goal: permanent supply of nutrients based on the needs of the crop

Fertilizer application

- When
 - Late fall
 - Early spring
- How
 - Broadcast in a circle extending to drip line

Basic elements of an irrigation technology

- 1. method of irrigation
- 2. aim of the irrigation
- 3. time and frequency of irrigation
- 4. amount of irrigation

Irrigation systems

- Gravity flow Flood, Furrow; needs leveled ground, low investment and not so low operational costs
- Sprinkler movable or fixed system, fixed system needs less manual labor, but has higher installation cost; over-the-tree or under-the-tree system; suitable for every irrigation aim
- Drip (trickle) supplies small amounts at frequent intervals, suitable just for water and nutrient supply; danger of clogging
- · Combination of sprinkler and drip

Aim of the irrigation

- Water supply complementing natural precipitation; (regulating water supply)
- Nutrient supply together with water, fertigation
- Conditioning increasing relative humidity, decreasing air and plant temperature by evporation of misted water
- Enhancing coloration of fruits water is sprayed on the surface of ripening fruits
- Delaying bud break evaporative cooling of buds by misting, (can decrease fruit quality)
- Reducing frost damage water is sprayed onto the trees at subzero temperatures

Time, frequency and amount of irrigation

- Soil water content (and state of the plant) should be monitored fog good timing of irrigation
- Duty of water (for the season) = crop water requirement – effective natural precipitation
- Evapotranspiration = pan evaporation * crop coefficient
- The amount of water supplied during one irrigation and frequency of irrigation depends on the
- soil physical composition
- aim of the irrigation
- irrigation method

Soil water content

Field capacity, non-available water and available water in the function of soil clay%

Excesses in additional irrigation leads to

- · excessive growth
- · lower fruit quality
- nutrient leaching
- · contamination of ground water
- · cause a lack of woodiness
- result in winter frost damage in sensitive varieties
- in summer can also promote increased didease infestation